Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is an increasing demand for processing large volumes of unstructured data for a wide variety of applications. However, protection measures for these big data sets are still in their infancy, which could lead to significant security and privacy issues. Attribute-based access control (ABAC) provides a dynamic and flexible solution that is effective for mediating access. We analyzed and implemented a prototype application of ABAC to large dataset processing in Amazon Web Services, using open-source versions of Apache Hadoop, Ranger, and Atlas. The Hadoop ecosystem is one of the most popular frameworks for large dataset processing and storage and is adopted by major cloud service providers. We conducted a rigorous analysis of cybersecurity in implementing ABAC policies in Hadoop, including developing a synthetic dataset of information at multiple sensitivity levels that realistically represents healthcare and connected social media data. We then developed Apache Spark programs that extract, connect, and transform data in a manner representative of a realistic use case. Our result is a framework for securing big data. Applying this framework ensures that serious cybersecurity concerns are addressed. We provide details of our analysis and experimentation code in a GitHub repository for further research by the community.more » « less
-
null (Ed.)Research and experimentation using big data sets, specifically large sets of electronic health records (EHR) and social media data, is demonstrating the potential to understand the spread of diseases and a variety of other issues. Applications of advanced algorithms, machine learning, and artificial intelligence indicate a potential for rapidly advancing improvements in public health. For example, several reports indicate that social media data can be used to predict disease outbreak and spread (Brown, 2015). Since real-world EHR data has complicated security and privacy issues preventing it from being widely used by researchers, there is a real need to synthetically generate EHR data that is realistic and representative. Current EHR generators, such as Syntheaä (Walonoski et al., 2018) only simulate and generate pure medical-related data. However, adding patients’ social media data with their simulated EHR data would make combined data more comprehensive and realistic for healthcare research. This paper presents a patients’ social media data generator that extends an EHR data generator. By adding coherent social media data to EHR data, a variety of issues can be examined for emerging interests, such as where a contagious patient may have been and others with whom they may have been in contact. Social media data, specifically Twitter data, is generated with phrases indicating the onset of symptoms corresponding to the synthetically generated EHR reports of simulated patients. This enables creation of an open data set that is scalable up to a big-data size, and is not subject to the security, privacy concerns, and restrictions of real healthcare data sets. This capability is important to the modeling and simulation community, such as scientists and epidemiologists who are developing algorithms to analyze the spread of diseases. It enables testing a variety of analytics without revealing real-world private patient information.more » « less
-
In today's mobile-first, cloud-enabled world, where simulation-enabled training is designed for use anywhere and from multiple different types of devices, new paradigms are needed to control access to sensitive data. Large, distributed data sets sourced from a wide-variety of sensors require advanced approaches to authorizations and access control (AC). Motivated by large-scale, publicized data breaches and data privacy laws, data protection policies and fine-grained AC mechanisms are an imperative in data intensive simulation systems. Although the public may suffer security incident fatigue, there are significant impacts to corporations and government organizations in the form of settlement fees and senior executive dismissal. This paper presents an analysis of the challenges to controlling access to big data sets. Implementation guidelines are provided based upon new attribute-based access control (ABAC) standards. Best practices start with AC for the security of large data sets processed by models and simulations (M&S). Currently widely supported eXtensible Access Control Markup Language (XACML) is the predominant framework for big data ABAC. The more recently developed Next Generation Access Control (NGAC) standard addresses additional areas in securing distributed, multi-owner big data sets. We present a comparison and evaluation of standards and technologies for different simulation data protection requirements. A concrete example is included to illustrate the differences. The example scenario is based upon synthetically generated very sensitive health care data combined with less sensitive data. This model data set is accessed by representative groups with a range of trust from highly-trusted roles to general users. The AC security challenges and approaches to mitigate risk are discussed.more » « less
An official website of the United States government

Full Text Available